Fully automatic vertebra detection in x-ray images based on multi-class SVM

نویسندگان

  • Fabian Lecron
  • Mohammed Benjelloun
  • Saïd Mahmoudi
چکیده

Automatically detecting vertebral bodies in X-Ray images is a very complex task, especially because of the noise and the low contrast resulting in that kind of medical imagery modality. Therefore, the contributions in the literature are mainly interested in only 2 medical imagery modalities: Computed Tomography (CT) and Magnetic Resonance (MR). Few works are dedicated to the conventional X-Ray radiography and propose mostly semi-automatic methods. However, vertebra detection is a key step in many medical applications such as vertebra segmentation, vertebral morphometry, etc. In this work, we develop a fully automatic approach for the vertebra detection, based on a learning method. The idea is to detect a vertebra by its anterior corners without human intervention. To this end, the points of interest in the radiograph are firstly detected by an edge polygonal approximation. Then, a SIFT descriptor is used to train an SVM-model. Therefore, each point of interest can be classified in order to detect if it belongs to a vertebra or not. Our approach has been assessed by the detection of 250 cervical vertebræ on radiographs. The results show a very high precision with a corner detection rate of 90.4% and a vertebra detection rate from 81.6% to 86.5%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cervical spine mobility analysis on radiographs: A fully automatic approach

Conventional X-ray radiography remains nowadays the most common method to analyze spinal mobility in two dimensions. Therefore, the objective of this paper is to develop a framework dedicated to the fully automatic cervical spine mobility analysis on X-ray images. To this aim, we propose an approach based on three main steps: fully automatic vertebra detection, vertebra segmentation and angular...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Automatic vertebra detection in x-ray images

In this paper we will describe our experiments with x-ray image analysis for vertebra detection in juvenile/adolescent patients with idiopathic scoliotic spines. We will focus on detecting vertebrae location in a anterior-posterior x-ray image in a fully automatic way. For accomplishing this, we propose a set of techniques for (i) isolating the spine by removing other bone structures (e.g. ribs...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Automatic Pavement Crack Detection Based on Aerial Imagery

Road health information is an important indicator for assessing the status of the road in management systems. Identifying the abandonment of surfaces is an important process in maintaining roads and traffic safety, which is traditionally conducted on the basis of field surveys. Today, remote sensing methods, especially photogrammetric imaging, are presented. In this article, based on by UAVs im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012